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Abstract 

Spoofing attacks are a fundamental threat to civilian 

Global Navigation Satellite System (GNSS) applications 

due to their powerful impact on receivers. As a result, 

plenty of anti-spoofing methods have been developed by 

researchers in recent years. In this paper, we have 

proposed a technique for the detection and classification 

of GNSS interferences based on the so-called Power-

Distortion (PD) detector. The PD detector uses received 

signal power and correlation-profile distortion monitoring 

for detecting any type of interference including spoofing 

attacks, jamming, or multi-path. We illustrate that 

detection and classification can significantly be improved 

by replacing prior methods of classification with our 

proposed method. The method uses a Multi-Layer 

Perceptron Neural Network (MLP NN) trained by Particle 

Swarm Optimizer with Autonomous Group (AGPSO) in 

which we will call it MLP NN-AGPSO classifier. The 

primary usage of this observation is the diagnosis of 

spoofing attacks among other interferences. The results 

show that the MLP NN-AGPSO detector exhibits 

improved detection and classification accuracy. Results 

obtained from simulation show that AGPSO3 has better 

classification performance in comparison to AGPSO1 and 

AGPSO2. More specifically, multi-path signal detection 

has a great accuracy of 95.33%, and spoofing and 

jamming are 90.11% 98.67% accurate, respectively. 

Keywords: GNSS- Spoofing- Jamming- Multi-path-

Classification- MLP NN- PSO. 

 

1. Introduction 

The use of Global Navigation Satellite Systems (GNSS) 

is spreading in today’s society. Many critical applications 

rely on GNSS signals to correctly identify position and 

timing. However, they are still vulnerable to interference 

and even low-power signal can deceive GNSS receivers. 

Interferences have been categorized into two main 

groups: (1) intentional and (2) unintentional. Jamming 

and spoofing are placed in the former group and multi-

path is in the latter. In jamming attacks, the radio 

transmitter emits a signal that with higher power to mask 

the authentic signal and prevent the receiver from 

obtaining the authentic signal. Multi-path is the result of 

environmental reflections of the main signal. A spoofing 

attack consists of transmitting GNSS-like signals, to fool 

the receiver into false tracking. Because of this, the 

spoofer can control the Position, Velocity, and Time 

(PVT) solution of the receiver which it believes to be true. 

GNSS-based systems security and protection against 

different interferences are the main issues in this field. 

GNSS authentication techniques are generally 

categorized into three groups: (1) cryptographic, (2) 

geometric, and (3) signal processing methods. The first 

group, utilize unpredictable modulation in spreading code 

or navigation data, although the modulation can be 

verified to indicate the authentic signal. Geometric 

method employs the authentic signals’ angle-of-arrival 

diversity. Approaches like the Power-Distortion (PD) 

detector [1] and parameter estimation methods [2] are 

placed in the last group. Techniques that are low cost, 

without any need of supplementary hardware, and those 

that can be achieved just by software update are practical 

and beneficial tools for GNSS signal authentication. 

Monitoring autocorrelation profile distortion and 

monitoring obtained power from Automatic Gain Control 

(AGC) set points and falls into this category.  

Artificial Neural Networks (ANNs) are taken into 

consideration because of their prominent features in 

parameters estimation and pattern recognition. Multi-

Layer Perceptron Neural Network (MLP NN) is one of the 

most common types of ANNs. Recently, many heuristic 

algorithms like Genetic Algorithm (GA) [3], Particle 

Swarm Optimization (PSO) [4,5], Ant Colony 

Optimization (ACO) [6], etc. have been utilized to train 

the ANNs to improve the functionality of the network. 

The common issue of all these algorithms is trapping in 

local optima and convergence speed. In this paper, we 

employ the AGPSO algorithm to train our MLP NN since 

we are dealing with a high dimensional problem and also 

its property in converging to the best solution and not 

trapping in local optima. 

The rest of the paper is organized as follows. The 

measurement model, the power of the received signal, and 



 

signal distortion are discussed in Section 2. In Section 3, 

we have overviewed ANN and  MLP NNs. Following the 

PSO and AGPSO algorithms have been introduced in 

Section 4. Section 5 introduces the proposed MLP NN-

Particle Swarm Optimizer with Autonomous Group 

(AGPSO) method for classification and the simulation 

results and validation for the proposed method are 

illustrated in Section 6. The final section provides a 

conclusion. 

 

2. Measurement Models  

Here, we discuss the measurement of two proposed 

metrics that we already mentioned, i.e., power and 

correlation distortion. Before that, some metrics are 

introduced for better understanding of the concept. 

First, Signal Quality Monitoring (SQM) is used to 

measure the signal distortion amount. Researchers have 

introduced many metrics for interference detection in this 

field [7]. SQM is based on continuously observing 

received GNSS signals for possible interference and 

distortion. The SQM is very powerful in detecting 

matched-powered spoofing attacks, where the spoofing 

signal is broadcast with only a slight power advantage, so 

the distortion generated at the correlation function 

between the signal code and code local replica is maximal. 

SQM-based methods are not applicable if the shape of the 

correlation peak is not affected by the spoofing attack. 

Second, the Symmetric Difference (SD), which is 

one of the metrics used for detecting spoof interferences 

[1]. It measures the distortion that can be caused by 

eighter spoofing or multi-path. For instance, in presence 

of noise, multi-path interference, and spoofing-free 

situations, the symmetric difference is equal to 0. In 

practice, SD is always non-zero and a large SD denotes 

the spoofer presence. The detectors based on this metric 

have two main deficiencies. First, standard SD uses just 

two taps of correlation function which make it insensitive 

to correlation-function distortions that are not aligned 

with these taps. The other deficiency is that the SD is 

dependent on tracking of the receiver’s code to adjust the 

correlation taps around the authentic correlation peak 

symmetrically. It should be considered that very low noise 

interferences, like thermal noise, exclude the code-

tracking loop to align taps pair flawlessly symmetric. This 

issue can be solved by using multiple correlation taps. In 

this approach, elicited values for the correlation by extra 

taps are exploited to obtain code and carrier phase and 

gain-controlled amplitude using maximum-likelihood 

estimations in the single signal correlation function 

model. After that, the correlation function estimation 

model is deducted from the correlation function value 

obtained by each tap. The remainders of the result are 

considered as the distortion measurement. In the 

following, the main metrics are described. 

2.1. Received Signal Power Measurement 

Signal’s power measurement was first introduced in [8,9] 

as an interference detection metric. Authors in [10] have 

presented this method as a spoof detection strategy. In this 

method, the AGC outputs are used to distinct any extra 

signals that is found in receiver antenna except the 

authentic signal. 

The received signal’s power is a simple and 

beneficial interference indicator. The signal power (𝑃𝑘) is 

measured over 𝑡𝑘 in RF band according to Eq. (1). As 𝑃𝑘 

is very low on the earth surface, even a weak interference 

signal can affect the authentic signal’s power. In these 

cases, a threshold is usually considered to monitor 

unusual and unawares changes in 𝑃𝑘. Power monitoring 

with other monitoring techniques is a useful metric for 

interference detection.  

𝑃𝑘 =  10𝑙𝑜𝑔(
1

𝑇
∫ |𝑟̂𝑐(𝑡)|2

𝑡𝑘

𝑡𝑘−1

𝑑𝑡) 
(1) 

Where 𝑟̂𝑐(𝑡) is the filtered version of 𝑟𝑐(𝑡) and 𝑟𝑐(𝑡) 

represents the signal that exits from front-end output and 

𝑃𝑘 is 𝑟̂𝑐(𝑡) average power. In receivers with AGC in their 

front-end, 𝑃𝑘 is computed by the AGC set point.  

2.2. Distortion Measurements using Multi-Tap 

Maximum-Likelihood Estimator 

The multi-tap maximum-likelihood estimator is used to 

decompose the raw GNSS in-phase and quadrature 

samples into two estimated signal models. Authors in [11] 

describe this estimator in detail. The maximum-likelihood 

estimator uses 𝑙 number of signal correlator taps. The tap 

that is located at the center, follows the assessed 

correlation function peak of the receiver while the others 

are aligned symmetrically around it. 𝜉𝑘(𝜏) illustrates the 

authentic signal correlation function. The correlation 

function of 𝑗𝑡ℎ tap is considered as Eq. (2):  

𝜉𝑘  (𝛿𝑗) =  𝛽𝑘[𝜉𝐴𝑘  (𝛿𝑗) + 𝜉𝑁𝑘  (𝛿𝑗)]  = 

𝑎𝐴𝑘𝑒𝑥𝑝(𝑗𝑗𝐴𝑘)𝑅(𝛿𝑗 − 𝜏𝐴𝑘) + 𝛽𝑘  𝜉𝑁𝑘 (𝛿𝑗) 
(2) 

where 𝛿𝑗 represent 𝑗𝑡ℎ tap location, k shows the time index, 

and 𝜏𝐴𝑘, φ𝐴𝑘 are the authentic signal’s code phase and 

carrier phase, respectively. 𝑎𝐴𝑘  is the gain-controlled 

amplitude. 𝑎𝐴𝑘, 𝜏𝐴𝑘, and φ𝐴𝑘 are estimated using a 

technique adapted from the maximum likelihood 

described in [11]. Each set of estimates {𝑎̂𝐴𝑘 , 𝜏̂𝐴𝑘 , 𝜑𝐴𝐾}, has 

a cost function 𝐽𝑘  which is calculated by the Eq. (3): 

𝐽𝑘 = ‖𝜉𝑘 − 𝐻𝑇(𝜏̂𝐴𝑘,𝛿)𝑎̂𝐴𝑘 exp( 𝑗𝜑̂𝐴̇𝑘)‖ 
(3) 

where ‖𝑥‖𝑇
2  =  𝑥𝑇𝑇4𝑥  is the norm 𝑥  definition. The 

obtained two sets of estimations return the lowest cost 𝐽𝑘. 

Since 𝐽𝑘 has a reverse ratio with likelihood estimation, the 

lower the value of the cost function, the higher the 

likelihood estimation will be. At next level, a filtered 

code-phase is obtained. New carrier phase and amplitude 

estimations are determined after each split point. These 

two steps are repeated until 𝐽𝑘  is not considerably 

changed. By 𝐽𝑘  convergence, the maximum-likelihood 

outputs are collected. The final 𝐽𝑘  is considered as the 



 

signal distortion value 𝐷𝑘. If the cost function 𝐽𝑘 is large, 

it means that the spoofing attack or multi-path 

interference exists. On the other hand, the correlation 

function value is proportionate truly if the 𝐽𝑘  is scanty. 

Using 𝑙  number of correlation taps superior in contrast 

with the symmetric difference, which uses only two taps. 

It extracts more information which makes it more 

insensitive against noise- and dynamics-induced 

misalignment, unlike the SD that makes false reports in 

such cases [12]. 
 

3. Multi-layer Perceptron Neural Network 

ANNs are one of the widely used computational tools for 

estimation and classification problems. Recently, ANNs 

are taken into consideration for their outstanding 

achievements. ANN performance is tightly related to 

choosing the right learning algorithm [13]. Back 

Propagation (BP) algorithm is one of the most popular 

learning algorithms that minimize the Mean Squared 

Error (MSE) between the desired and the estimated 

outputs for the particular network inputs [14]. For 

prediction problems, BP learning algorithm is used to 

train MLP NN by computing the connection weights and 

biases. Despite BP algorithm benefits, it has some 

drawbacks. First, the result may be trapped in local optima 

because of high dependency on initial parameters, which 

means the convergence is not guaranteed [15]. Second, 

the slow convergence rate may lead BP to get trapped in 

many iterations. The BP algorithm deficiencies may result 

in a slow learning process or sometimes produce less 

accurate outcomes [13,14]. 

 

Fig. 1: MLP NN with (𝑝, 𝑞, 𝑟) structure. 

MLP NN is one of the widely used multilayer ANNs. 

Each MLP NN has at least three layers: (1) the input layer, 

(2) the hidden layer, and (3) the output layer. Fig. 1 shows 

a three-layer MLP NN with 𝑝 inputs, 𝑞 hidden neurons, 

and 𝑟 output neurons. 𝑤𝑖𝑗 is the weight that connects ⅈ𝑡ℎ 

input node and 𝑗𝑡ℎ node in the hidden layer, 𝑏1𝑗 is bias 

weight for 𝑗𝑡ℎ node in the hidden layer, 𝑤𝑗𝑘 is the 

connection weight between jth node in the hidden layer 

and 𝑘𝑡ℎ node in the output layer, and 𝑏2𝑘 is bias weight for 

𝑘𝑡ℎ node in the output layer. In this paper, a MLP NN has 

been utilized to detect and classify PD dataset into 

jamming, spoofing, multi-path, and interference-free 

classes. 

The outputs of first hidden layer neurons are 

computed by Eq. (4):  

𝜈𝑗 = 𝜑(∑ 𝜔𝑖𝑗𝑥𝑖

𝑝

𝑖=1

+ 𝑏1𝑗) 
(4) 

where p is the number of NN inputs, 𝑤𝑖𝑗 represents the 

connecting weights between the ⅈ𝑡ℎ  node of the inputs and 

𝑗𝑡ℎ node in the hidden layer, and 𝑥𝑖 shows the ⅈ𝑡ℎ input. 

After calculating the hidden layer outputs, network 

estimations would be calculated as follows: 

𝑦𝑘 = 𝑓(∑ 𝜔𝑗𝑘𝑣𝑗

𝑞

𝑗=1

+ 𝑏2𝑘) 
(5) 

where q is the number of hidden layer nodes, 𝑤𝑗𝑘  

represents the weights between 𝑗𝑡ℎ  node of hidden layer 

and 𝑘𝑡ℎ node of the output, and 𝑣𝑖 represents 𝑗𝑡ℎ node of 

the hidden layer output 

 

4. PSO Algorithm Overview  

PSO is one most common optimization algorithms that is 

used extensively. The main idea of the PSO algorithms is 

adopted from the animals’ collective behavior [16,17]. It 

uses sets of particles to find the best solution in the 

searching area. Each particle has a position and a velocity. 

Updating particles are mainly based on the particle’s 

distance from its local best solution and general best 

solution. PSO algorithm is modeled as follows in Eq. (6): 

𝑣𝑖
𝑡+1 = 𝑤𝜈𝑖

𝑡 + 𝑐1 ⋅ 𝑟1 ⋅ (𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖
𝑡) + 𝑐2 ⋅ 𝑟2

⋅ (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖
𝑡) 

𝑥𝑖
𝑡+1 =  𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1 

(6) 

where 𝑣𝑖
𝑡 is the velocity of ⅈ𝑡ℎ particle at 𝑡𝑡ℎ iteration, 𝑤 is 

inertia weight to control the PSO algorithm stableness and 

it is typically chosen between 0.4 and 0.9, 𝑐1 and 𝑐2 are 

cognitive and co-operative coefficients respectively, 𝑟1 

and 𝑟2 are random numbers between 0 and 1 to give the 

PSO algorithm the ability of random search. 𝑥𝑖
𝑡 shows the 

ⅈ𝑡ℎ particle in time 𝑡. 𝑝𝑏𝑒𝑠𝑡𝑖 and 𝑔𝑏𝑒𝑠𝑡 are ⅈ𝑡ℎ particle local 

best solution and general best found. 𝑤, 𝑐1, and 𝑐2 are the 

three main coefficients that the PSO performance is 

dependent to. 

One of the PSO advantages that makes it popular is 

its simplicity and low-cost computation. However, 

trapping in local optima and slowness of convergence 

velocity are two inevitable issues [18], for most 

evolutionary algorithms. One of the approaches to handle 

these problems is using dynamic parameter tuning which 

improves the efficiency of the PSO algorithm without 

increasing in computational cost. AGPSO algorithm’s 

main idea focuses on 𝑐1 and 𝑐2 coefficients to improve the 

convergence of PSO. 



 

4.1. Autonomous Group PSO Algorithm 
The tricky part of all the optimization algorithms is 

finding the global minimum [19]. One of the issues in the 

most minimization algorithm is being trapped in local 

minima. AGPSO employs different groups of 𝑐1 and 𝑐2 to 

solve this problem. In the basic PSO algorithm, particles 

behave similarly in terms of local and general searching. 

The resemblance of these strategies means that all the 

parameters are tuned just like each other with the same 

strategy, which means that particles are obliged to search 

without intelligence, but in AGPSO algorithm instead, 

tries different ways to tune optimization parameters. In 

this model, 𝑐1 and 𝑐2 are updated with different strategies 

which are represented as continuous mathematical 

functions in Table 1. Figures 3, 4 and 5 illustrate the 

behavior of 𝑐1 and 𝑐2 over the iterations. During the 

iterations, 𝑐1 is reduced and 𝑐2 is increased. This means 

that, during first iterations that 𝑐1 is bigger than 𝑐2, 

particles tend to explore local range, then in the next 

iterations, when 𝑐2 gets bigger than 𝑐1, they search the area 

generally. 

Table 1: Updating strategies in AGPSO. 

AGPSO  
Updating formula 

c1 c2 

A
G

P
S

O
1

 

Group 

1 
(−2.05/T )t +  2.55 (1/T )t +  1.25 

Group 

2 
(−2.05/T )t +  2.55 (2t3/T ) +  0.5 

Group 
3 

(−2t3 ∕ T3)  +  2.5 (1/T )t +  1.25 

Group 

4 
(−2t3 ∕ T3)  +  2.5 (2t3 ∕ T3) +  0.5 

    

A
G

P
S

O
2

 

Group 

1 
2.5
− (2log(t)/log(T )) 

(2log(t)/log(T )) 
+  0.5 

Group 

2 
(−2t3 ∕ T3)  +  2.5 (2t3 ∕ T3) +  0.5 

Group 

3 
0.5 
+  2exp[−(4t ∕ T)2] 

2.2 − 2exp[(4t ∕ T)2] 

Group 

4 
2.5 +  2(t ∕ T)2  
− 2(2t/T ) 

0.5 − 2(t ∕ T)2  
+  2(2t/T ) 

    

A
G

P
S

O
3

 

Group 

1 1.95 − 2t
1

3⁄ ∕ T
1

3⁄  2t
1

3⁄ ∕ T
1

3⁄  +  0.05 

Group 
2 

(−2t3 ∕ T3)  +  2.5 (2t3 ∕ T3) +  0.5 

Group 
3 1.95 − 2t

1
3⁄ ∕ T

1
3⁄  (2t3 ∕ T3) +  0.5 

Group 

4 
(−2t3 ∕ T3)  +  2.5 2t

1
3⁄ ∕ T

1
3⁄  +  0.05 

 
In Table 1, 𝑡 and 𝑇 are the current and the maximum 

number of iterations, respectively. Based on each 

particle’s group among those in Table 1, elements search 

the area differently. For instance, in group 1 from 

AGPSO1, particles have social behavior in the first 

iterations, while members of group 4 tend to investigate 

the area exclusively in the most iterations. 

 

5. Proposed MLP-PSO Methods 

This section introduces the proposed MLP NN trained by 

AGPSO method for classification.  

5.1 Multi-Layer Perceptron Neural Network 

Structure 

For the classification problem, we used a four-layer MLP 

NN with (2,5,4,1) structure. However, the output layer is 

unsupervised because we just want to map the output from 

the previous layer to logical values, 0 or 1. Three transfer 

functions used in the model are defined as the following: 

𝜑(𝑥)  =  𝑥𝑒−
1

2
𝑥2

 (7) 

𝜓(𝑥)  =
1

1 + 𝑒−𝑥 (8) 

𝑓([𝑥1, 𝑥2, … , 𝑥𝑘]) = 𝑐𝑜𝑚𝑝𝑒𝑡([𝑥1, 𝑥2, … , 𝑥𝑘]) 
(9) 

The network inputs are the power of the received 

signal and correlation function distortion. The desired 

output is the corresponding class according to the inputs. 

MSE of the MLP NN output is considered as the fitness 

function for the PSO algorithm and it’s calculated as 

follow: 

𝑀𝑆𝐸 =
1

𝑛
× ∑(𝑌𝑑𝑒𝑠𝑖𝑟𝑒,𝑖 − 𝑌𝑜𝑢𝑡𝑝𝑢𝑡,𝑖)

2
𝑛

1

 
(10) 

 

where 𝑌𝑜𝑢𝑡𝑝𝑢𝑡,𝑖 represent the identified class detected by 

the classifier and 𝑌𝑑𝑒𝑠𝑖𝑟𝑒,𝑖 shows the actual class for 𝑘𝑡ℎ 

sample in dataset. In each iteration, the MSE of each 

particle from PSO is calculated and sent to the PSO to 

modify its particles’ positions and velocities. 

5.2 Training MLPNN by AGPSO Algorithm 

AGPSO algorithm is utilized as the MLP NN training 

algorithm. The designed classifier is so-called the MLP 

NN-AGPSO classifier. PSO algorithm has been employed 

for its properties in fast convergence speed, not being 

trapped in local minima, etc. Parameters 𝑐1 and 𝑐2 are 

chosen from Table 1 according to the AGPSO type. Each 

of the four groups in the selected AGPSO type is 

randomly assigned to the PSO particles. 𝑤 is the weighting 

function which is linearly decreased from 0.9 to 0.4. Eq. 

(11) shows the relation of 𝑤 in each iteration. 

𝑤 =  0.9 − 0.5 ∗ (𝑡/𝑇) 
(11) 

where 𝑡 and 𝑇 are the current iteration and the maximum 

number of iterations, respectively. 

To train an MLP NN by heuristic algorithms like 

PSO, the whole structure should be represented as Fig. 2.  
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Fig. 2: Training MLP NN by PSO algorithm (MLP NN-PSO). 

There are three possible ways to represent a 

network’s weights and biases: vector, matrix, and binary. 

In vector and matrix representation, each element is 

represented as a vector and matrix respectively, and in the 

binary representation, elements are given as a sequence of 

bits. Here as our NN is not complex, vector representation 

has been utilized for the connection weights and biases. 

Eq. (12) shows a sample of vector representation: 

𝑃𝑎𝑟𝑡ⅈ𝑐𝑙𝑒 =  [𝑤1, 𝑤2, 𝑤3, … , 𝑏1, 𝑏2, 𝑏3, … ] (12) 

 

Here, particles are the MLP NN weights. In each 

iteration, updated particles are applied to the network to 

calculate the MSE of the predicted output. The MSE is 

used as PSO particles’ fitness so it will be sent to the PSO 

algorithm to find 𝑔𝑏𝑒𝑠𝑡, 𝑝𝑏𝑒𝑠𝑡, and update the position and 

the velocity of the particle.

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: AGPSO1 autonomous groups behavior during iterations. 

Fig. 4: AGPSO2 autonomous groups behavior during iterations. 

Fig. 5: AGPSO3 autonomous groups behavior during iterations. 



 

 

The PSO algorithm’s particles are initialized with 

randomly distributed positions and their velocity is 

considered zero. The values of each dimension are 

limited distributed positions and the initial velocities 

for the particles between -1 and 1. Then, the particles 

will be divided into the AGPSO groups (from group 1 

to group 4) accidentally. After each iteration, 𝑝𝑏𝑒𝑠𝑡 and 

𝑔𝑏𝑒𝑠𝑡 for each particle is calculated based on the mean 

squared error from the MLP NN. Finally, 𝑐1 and 𝑐2 are 

calculated according to the group strategy to update the 

particles’ position and velocity using Eq. (6).  

 

6. Simulation and Results 

This section illustrate the simulation results and 

validation for the proposed method. 

 

Fig. 6: Simulated distortion (Dk) and received power (Pk) 

measurements for interference-free (green), multi-path 

(black), spoofing (red), and jamming (blue). 

 

All three AGPSO algorithms have been assessed 

15 times and the best result of each one is chosen as the 

final result for comparison. The maximum iteration for 

the AGPSO algorithm is set to 250. Fig. 6 is the training 

dataset for MLP NN-AGPSO.  

 
Fig. 7: MLP NN-AGPSO classification region for AGPOS1 

for interference-free (green), multi-path (black), spoofing 

(red), and jamming (blue). 

Fig. 7 illustrates the AGPSO1 classification result. 

Table 2 shows classification results by applying 

weights trained by MLP NN-AGPSO to the classifier 

for categorizing the received signals into spoofing, 

jamming, multipath, or interference-free groups based 

on their power and correlation distortion. These results 

show that autonomous group PSO can improve the 

classification accuracy in contrast with other 

algorithms mentioned in Tables 3, 4, and 5 in some 

detection of interference classes.  

Table 4 shows the result of the Bayes-optimal 

classifier reported in [1]. Comparing our proposed 

method and Table 2 shows that AGPSO1, AGPSO2, 

and AGPSO3 has resulted in about 4.7%, 6.3%, and 3% 

more accuracy in detecting spoofing interference 

respectively. Also, in the detection of multi-path and 

jamming interference, we improved the result by 

approximately 95% and 1.6% respectively by 

employing AGPSO3. The same analysis can be applied 

in comparison to our proposed method with the results 

in Tables 3 and 5. 

Table 2: Simulation-evaluated by MLP NN-AGPSO 

classifier. 

AGPSO Decision 
True decision 

H0 H1 H2 H3 

AGPSO1 

H0 0.8317 0.4772 0.0261 0.0083 

H1 0.1550 0.4733 0.0272 0.0006 

H2 0.0006 0.0383 0.9028 0.0089 

H3 0.0128 0.0111 0.0439 0.9822 

      

AGPSO2 

H0 0.9895 0.8210 0.0347 0.0147 

H1 0.0000 0.0000 0.0000 0.0000 

H2 0.0062 0.1757 0.9330 0.0110 

H3 0.0043 0.0033 0.0323 0.9743 

      

AGPSO3 

H0 0.0000 0.0000 0.0000 0.0000 

H1 0.9711 0.9533 0.0522 0.0056 

H2 0.0011 0.0306 0.9011 0.0078 

H3 0.0278 0.0161 0.0467 0.9867 

 

 

Table 3: Simulation-evaluated classification reported in 

[12].  

Decision 
True decision 

H0 H1 H2 H3 

H0 0.9947  0.9083  0.0670  0.0039  

H1 0  0.0698  0.0117  0  

H2 0.0043  0.0214  0.8463  0.0155  

H3 0.0010  0.0005  0.0750  0.9806  

 

Table 4: Simulation-evaluated classification reported in [1]. 

Decision 
True decision 

H0 H1 H2 H3 

H0 0.9942  0.8809  0.0624  0.0184  

H1 0.0005  0.0987  0.0234  0  

H2 0.0001  0.0162  0.8698  0.0017  

H3 0.0039  0.0028  0.0442  0.9799  

 

 



 

Table 5: Simulation-evaluated classification reported in 

[20]. 

Decision 
True decision 

H0 H1 H2 H3 

H0 0.8794  0.5004  0.0427  0.0457  

H1 0.1201  0.4751  0.0511  0.0047  

H2 0.0001  0.0242  0.8871  0.0056  

H3 0.0002  0.0001  0.0190  0.9437  

 

H0, H1, H2, H3 are interference-free, multi-path, 

spoofing, and jamming, respectively. 

 

7. Conclusion 

In this paper, we utilized a so-called MLP NN-AGPSO 

classifier for the detection and classification of GNSS 

possible interferences. To assess the designed 

classifier, after performance analysis, the obtained 

results were compared with methods in [1], [12], and 

[20]. According to the results, we can conclude that the 

AGPSO algorithm can lead us to better results in terms 

of classification accuracy compared with the other 

methods’ benchmarks. The results show that multi-

path detection has been improved about 95%, and 

spoofing and jamming detection are roughly 3% and 

1% more precise compared with the results in [1]. 
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